论文标题
$ \ vec {p} $+$^{6} $的分析能力预测弹性散射,从$ \ vec {p} $++$^{4} $弹性散射在200 meV
Prediction of the analyzing power for $\vec{p}$+$^{6}$He elastic scattering at 200 MeV from $\vec{p}$+$^{4}$He elastic scattering at 200 MeV
论文作者
论文摘要
我们为$ \ vec {p}+^{6} $应用群集折叠(CF)模型,在200 meV中散射,其中$ \ vec {p} $和$^{4} $之间的电位适合他在$ \ vec {p}+^{p}+^{4} $ 200 mev上的$ \ \ vec {p}+^{4} $。对于$ \ vec {p}+^{6} $散布在200 meV中,CF模型在没有免费参数的情况下重现了测得的差分横截面,然后我们预测$ q $的分析功率$ a_y(q)$,其中$ q $是传输动量。 Johnson,Al-Khalili和Tostevin构建了一种用于单中性光环散射的理论,(1)(1)绝热近似以及(2)忽略价中子和目标之间的相互作用,并在某些条件下降低了卤代核的弹性散射之间的简单关系。我们通过(3)eikonal近似提高了他们的理论,以确定$^{6} $的$ a_y(q)$从$ a_y(q)$ for $^{4} $ He中的数据中。当近似(1) - (3)良好时,改进的理论是准确的。在这三个近似值中,近似值(2)最重要。 CF模型表明,近似值(2)在$ 0.9 <q <q <2.4 $ fm $^{ - 1} $中很好。在改进的理论中,$ a_y(q)$ for $^{6} $与$^{4} $ HE相同。然后,在$ 0.9 <q <q <2.4 $ fm $^{ - 1} $中,我们预测$ a_y(q)$ for $ \ vec {p}+^{6} $ he在200 meV中从$ a_y(q)$ for $ a_y(q)$ for $ a_y(q)$ for $ \ \ vec {p}+^p}+^{p}+^{4} $ spacking at 200 mev散射。因此,我们预测$ a_y(q)$与模型依赖性和无关的处方。以$^{6} $测量的差分横截面的比率与$^{4} $相对于$^{6} $ HE的波函数有关。然后,我们确定$^{4} $介于$^{6} $ He中的$^{4} $之间的半径。半径为5.77 FM。
We apply the cluster-folding (CF) model for $\vec{p}+^{6}$He scattering at 200 MeV, where the potential between $\vec{p}$ and $^{4}$He is fitted to data on $\vec{p}+^{4}$He scattering at 200 MeV. For $\vec{p}+^{6}$He scattering at 200 MeV, the CF model reproduces measured differential cross section with no free parameter, We then predict the analyzing power $A_y(q)$ with the CF model, where $q$ is the transfer momentum. Johnson, Al-Khalili and Tostevin construct a theory for one-neutron halo scattering, taking (1) the adiabatic approximation and (2) neglecting the interaction between a valence neutron and a target, and yield a simple relationship between the elastic scattering of a halo nucleus and of its core under certain conditions. We improve their theory with (3) the eikonal approximation in order to determine $A_y(q)$ for $^{6}$He from the data on $A_y(q)$ for $^{4}$He. The improved theory is accurate, when approximation (1)--(3) are good. Among the three approximations, approximation (2) is most essential. The CF model shows that approximation (2) is good in $0.9 < q < 2.4$ fm$^{-1}$. In the improved theory, the $A_y(q)$ for $^{6}$He is the same as that for $^{4}$He. In $0.9 < q < 2.4$ fm$^{-1}$, we then predict $A_y(q)$ for $\vec{p}+^{6}$He scattering at 200 MeV from measured $A_y(q)$ for $\vec{p}+^{4}$He scattering at 200 MeV. We thus predict $A_y(q)$ with the model-dependent and the model-independent prescription. The ratio of differential cross sections measured for $^{6}$He to that for $^{4}$He is related to the wave function of $^{6}$He. We then determine the radius between $^{4}$He and the center-of-mass of valence two neutrons in $^{6}$He. The radius is 5.77 fm.