论文标题
Newman-Penrose标量和状态黑洞方程
Newman-Penrose scalars and black hole equations of state
论文作者
论文摘要
在这项工作中,我们探讨了纽曼 - 芬罗斯标量的连接,包括Penrose-Rindler $ \ Mathcal {k} $ - 曲率,并具有渐近的反de抗De reissner-nordström黑洞的状态。从扩展相空间和地平线热力学方法的角度简要审查了这些黑洞的状态方程之后,就这种方程式提供了几何分裂,以定义$ \ Mathcal {k} $曲率的非消失的Newman-Penrose标量。通过这种分裂,在最初讨论的黑洞热力学方法的背景下为此类标量开发了可能的热力学解释。之后,使用Bel-Robinson张量的平方根在压力或能量密度方面提出了地平线的条件,这可以理解为这些表面的替代热力学定义。
In this work we explore the connections between Newman-Penrose scalars, including the Penrose-Rindler $\mathcal{K}$-curvature, with the equation of state of asymptotically Anti-de Sitter Reissner-Nordström black holes. After briefly reviewing the equation of state for these black holes from the point of view of both the Extended Phase Space and the Horizon Thermodynamics approaches, a geometric splitting is given for such an equation in terms of the non vanishing Newman-Penrose scalars which define the $\mathcal{K}$-curvature at the horizon. From this splitting, a possible thermodynamical interpretation is developed for such scalars in the context of the black hole thermodynamics approaches initially discussed. Afterwards, the square root of the Bel-Robinson tensor is employed to propose conditions at the horizons in terms of pressures or energy densities, which can be understood as alternative thermodynamical definitions of these surfaces.