论文标题

适应性解释的神经网络(AXNNS)

Adaptive Explainable Neural Networks (AxNNs)

论文作者

Chen, Jie, Vaughan, Joel, Nair, Vijayan N., Sudjianto, Agus

论文摘要

尽管机器学习技术已成功地应用于多个领域,但模型的黑盒性质给解释和解释结果带来了挑战。我们开发了一个称为自适应的可解释神经网络(AXNN)的新框架,用于实现良好的预测性能和模型解释性的双重目标。为了进行预测性能,我们建立了一个结构化的神经网络,该神经网络由使用两个阶段过程的广义加性模型网络和加性索引模型(通过可解释的神经网络)组成。这可以使用提升或堆叠合奏来完成。为了解释性,我们展示了如何将AXNN的结果分解为主要影响和高阶相互作用效应。这些计算是从Google的开源工具ADANET继承的,可以通过分布式计算来有效地加速。结果在模拟和真实数据集上说明。

While machine learning techniques have been successfully applied in several fields, the black-box nature of the models presents challenges for interpreting and explaining the results. We develop a new framework called Adaptive Explainable Neural Networks (AxNN) for achieving the dual goals of good predictive performance and model interpretability. For predictive performance, we build a structured neural network made up of ensembles of generalized additive model networks and additive index models (through explainable neural networks) using a two-stage process. This can be done using either a boosting or a stacking ensemble. For interpretability, we show how to decompose the results of AxNN into main effects and higher-order interaction effects. The computations are inherited from Google's open source tool AdaNet and can be efficiently accelerated by training with distributed computing. The results are illustrated on simulated and real datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源