论文标题
具有边缘计算的物联网网络中资源分配的多代理增强学习
Multi-agent Reinforcement Learning for Resource Allocation in IoT networks with Edge Computing
论文作者
论文摘要
为了支持流行的物联网(IoT)应用程序,例如虚拟现实,手机游戏和可穿戴设备,Edge Computing提供了较低延迟的集中云计算的前端分布式计算原型。但是,由于最终用户对频谱和计算资源的巨大要求以及对无线电访问技术(RAT)的频繁要求,因此最终用户卸载计算是一项挑战。在本文中,我们通过将其作为随机游戏制定,研究了通过物联网边缘计算网络中资源分配的计算卸载机制。在这里,每个最终用户都是一个学习代理,观察其本地环境,以学习本地计算或边缘计算的最佳决策,目的是通过选择其发射功率水平,大鼠和子渠道,而不了解其他最终用户的任何信息,以最大程度地降低长期系统成本。因此,开发了一个多代理增强学习框架,以通过建议的基于独立学习者的多机构Q学习(基于IL的MA-Q)算法来解决随机游戏。模拟表明,与其他两种基准算法相比,在集中式网关的通道估计中,基于IL的MA-Q算法可以解决该法式问题,并且在没有额外的频道估计上,可以更有效地解决该问题。
To support popular Internet of Things (IoT) applications such as virtual reality, mobile games and wearable devices, edge computing provides a front-end distributed computing archetype of centralized cloud computing with low latency. However, it's challenging for end users to offload computation due to their massive requirements on spectrum and computation resources and frequent requests on Radio Access Technology (RAT). In this paper, we investigate computation offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a stochastic game. Here, each end user is a learning agent observing its local environment to learn optimal decisions on either local computing or edge computing with the goal of minimizing long term system cost by choosing its transmit power level, RAT and sub-channel without knowing any information of the other end users. Therefore, a multi-agent reinforcement learning framework is developed to solve the stochastic game with a proposed independent learners based multi-agent Q-learning (IL-based MA-Q) algorithm. Simulations demonstrate that the proposed IL-based MA-Q algorithm is feasible to solve the formulated problem and is more energy efficient without extra cost on channel estimation at the centralized gateway compared to the other two benchmark algorithms.