论文标题
在有限生成的组的免费产品上随机步行的大偏差
Large deviations for random walks on free products of finitely generated groups
论文作者
论文摘要
我们证明存在具有适当凸率函数的大偏差原理的存在,以分布从有限生成的组的自由产品上随机步行的距离分布。结果,我们得出了在普通树上随机行走的最接近邻居的相同原理。
We prove existence of the large deviation principle, with a proper convex rate function, for the distribution of the renormalized distance from the origin of a random walk on a free product of finitely generated groups. As a consequence, we derive the same principle for nearest-neighbour random walks on regular trees.