论文标题

在动态系统中具有提取和力矩重建的信息几何方法

An information-geometric approach to feature extraction and moment reconstruction in dynamical systems

论文作者

Das, Suddhasattwa, Giannakis, Dimitrios, Székely, Enikő

论文摘要

我们建议在动态系统中进行特征提取和力矩重建的尺寸缩小框架,该框架在系统的可观察到的概率度量空间上运行,而不是直接在可观察物本身的原始数据空间中,就像更常规的方法一样。我们的方法是基于这样一个事实,即动态系统的轨道诱导了由系统(部分)观察结果定义的可测量空间的概率度量。我们将这些概率度量的空间配备有差异,即概率分布之间的距离,并使用此差异来定义内核积分运算符。该操作员的本征函数创建了捕获动力学系统不同时间尺度的函数的正顺序基础。我们的主要结果之一表明,与动态有关的概率度量矩的演变可能与原始动力学系统上的时间平移操作员有关。使用此结果,我们表明时刻可以在特征功能的基础上扩展,从而为矩的非参数预测开辟了途径。如果概率度量的收集本身是一种歧管,我们还可以为统计歧管配备Riemannian指标,并使用信息几何形状的技术。我们在2-Torus和Lorenz 63系统上介绍了对Ergodic动力学系统的应用,并在一个现实世界中显示,少数特征向量足以重建大气时间序列的时刻(这里是前四个时刻),即实时多变量Madden-Julden-Julden-Julian-Julian-Julian-Julian振动索引。

We propose a dimension reduction framework for feature extraction and moment reconstruction in dynamical systems that operates on spaces of probability measures induced by observables of the system rather than directly in the original data space of the observables themselves as in more conventional methods. Our approach is based on the fact that orbits of a dynamical system induce probability measures over the measurable space defined by (partial) observations of the system. We equip the space of these probability measures with a divergence, i.e., a distance between probability distributions, and use this divergence to define a kernel integral operator. The eigenfunctions of this operator create an orthonormal basis of functions that capture different timescales of the dynamical system. One of our main results shows that the evolution of the moments of the dynamics-dependent probability measures can be related to a time-averaging operator on the original dynamical system. Using this result, we show that the moments can be expanded in the eigenfunction basis, thus opening up the avenue for nonparametric forecasting of the moments. If the collection of probability measures is itself a manifold, we can in addition equip the statistical manifold with the Riemannian metric and use techniques from information geometry. We present applications to ergodic dynamical systems on the 2-torus and the Lorenz 63 system, and show on a real-world example that a small number of eigenvectors is sufficient to reconstruct the moments (here the first four moments) of an atmospheric time series, i.e., the realtime multivariate Madden-Julian oscillation index.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源