论文标题

动态场景的深度均匀估计

Deep Homography Estimation for Dynamic Scenes

论文作者

Le, Hoang, Liu, Feng, Zhang, Shu, Agarwala, Aseem

论文摘要

同型估计是许多计算机视觉问题的重要一步。最近,与传统方法相比,深层神经网络方法已证明对此问题有利。但是,这些新方法不考虑输入图像中的动态内容。他们只使用图像对训练神经网络,可以使用同谱系完美对齐。本文研究并讨论了如何设计和训练处理动态场景的深神网络。我们首先收集具有动态内容的大型视频数据集。然后,我们开发了一个多尺度的神经网络,并表明,当使用我们的新数据集对经过适当训练时,该神经网络已经可以在某种程度上处理动态场景。为了以更有原则的方式估算动态场景的同谱,我们需要确定动态内容。由于动态内容检测和同型估计是两个紧密耦合的任务,因此我们遵循多任务学习原理并增强我们的多尺度网络,从而共同估计动态掩码和同型。我们的实验表明,我们的方法可以强有力地估计具有动态场景,模糊文物或缺乏纹理的挑战场景的同构象作品。

Homography estimation is an important step in many computer vision problems. Recently, deep neural network methods have shown to be favorable for this problem when compared to traditional methods. However, these new methods do not consider dynamic content in input images. They train neural networks with only image pairs that can be perfectly aligned using homographies. This paper investigates and discusses how to design and train a deep neural network that handles dynamic scenes. We first collect a large video dataset with dynamic content. We then develop a multi-scale neural network and show that when properly trained using our new dataset, this neural network can already handle dynamic scenes to some extent. To estimate a homography of a dynamic scene in a more principled way, we need to identify the dynamic content. Since dynamic content detection and homography estimation are two tightly coupled tasks, we follow the multi-task learning principles and augment our multi-scale network such that it jointly estimates the dynamics masks and homographies. Our experiments show that our method can robustly estimate homography for challenging scenarios with dynamic scenes, blur artifacts, or lack of textures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源