论文标题

弱KAM解决方案的全球行为,用于精确的符号扭曲图

Global Behaviors of weak KAM Solutions for exact symplectic Twist Maps

论文作者

Zhang, Jianlu

论文摘要

我们研究了弱KAM解决方案的几种全局行为$ u_c(x,t)$由$ c \ in H^1(\ Mathbb t,\ Mathbb r)$参数化。对于确切的符号扭曲地图的悬挂式汉密尔顿$ h(x,p,t)$,我们可以找到由$ c(c(x,t)$ commotertions $ c(c(x,t)$)由$ c(σ)\ in h^1(\ mathbb t,\ mathbb t,\ mathbb r)$ comminetry和$ c(σ)$ contine -c(σ) \ partial_tu_c+h(x,x,\ partial_x u_c+c,t)=α(c),\ quad \ text {a.e. \}(x,x,x,x,t)\ in \ mathbb t^2,\],因此弱kam解决方案的顺序r)} $是$ 1/2- $hölder的参数$σ\ in \ mathbb {r} $的连续性。此外,对于每个通用特征(无论是规则或单数)求解\ [\ left \ {\ begin {Aligned}&\ dot {x}(x}(s)\ in \ text {co} \ big [\ partial_ph \ big(x(s),c+d^+u_c \ big(x(s),s+t \ big),s+t \ big)\ big] \ big],&\\&x(0)= x_0,\ x_0,\ quad(x_0,x_0,x_0,t) \]我们通过唯一识别的旋转号$ω(c)\在h_1(\ mathbb t,\ mathbb r)$中对其进行评估。该特性导致相位空间中的一定拓扑阻塞,并引起局部横向轨迹现象。此外,我们讨论了这一点适用于高维情况。

We investigated several global behaviors of the weak KAM solutions $u_c(x,t)$ parametrized by $c\in H^1(\mathbb T,\mathbb R)$. For the suspended Hamiltonian $H(x,p,t)$ of the exact symplectic twist map, we could find a family of weak KAM solutions $u_c(x,t)$ parametrized by $c(σ)\in H^1(\mathbb T,\mathbb R)$ with $c(σ)$ continuous and monotonic and \[ \partial_tu_c+H(x,\partial_x u_c+c,t)=α(c),\quad \text{a.e.\ } (x,t)\in\mathbb T^2, \] such that sequence of weak KAM solutions $\{u_c\}_{c\in H^1(\mathbb T,\mathbb R)}$ is $1/2-$Hölder continuity of parameter $σ\in \mathbb{R}$. Moreover, for each generalized characteristic (no matter regular or singular) solving \[ \left\{ \begin{aligned} &\dot{x}(s)\in \text{co} \Big[\partial_pH\Big(x(s),c+D^+u_c\big(x(s),s+t\big),s+t\Big)\Big], & \\ &x(0)=x_0,\quad (x_0,t)\in\mathbb T^2,& \end{aligned} \right. \] we evaluate it by a uniquely identified rotational number $ω(c)\in H_1(\mathbb T,\mathbb R)$. This property leads to a certain topological obstruction in the phase space and causes local transitive phenomenon of trajectories. Besides, we discussed this applies to high-dimensional cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源