论文标题

通过机器学习来自动确定混合粒子场参数

Automated Determination of Hybrid Particle-Field Parameters by Machine Learning

论文作者

Ledum, Morten, Bore, Sigbjørn Løland, Cascella, Michele

论文摘要

杂交粒子场分子动力学方法是标准基于粒子的粗粒物方法的有效替代品。在这项工作中,我们提出了一个自动化协议,以优化基于贝叶斯优化的相互作用能量密度功能的有效参数。机器学习协议利用了在一组可观察到的相关性上定义的任意健身函数,该功能通过迭代过程最佳匹配。我们使用磷脂双层作为测试系统,我们证明,通过我们的协议获得的参数能够比Flory-Huggins模型得出的当前使用的集合更好地复制参考数据。优化过程是稳健的,并产生了物理声音值。此外,我们表明这些参数在化学类似物种中令人满意地转移。我们的协议是一般的,不需要后验重新平衡。因此,它特别适合优化复杂化学混合物的可靠混合粒子场电位,并将相应的模拟扩展到所有可能无法通过简单的理论模型进行密度函数校准的系统。

The hybrid particle-field molecular dynamics method is an efficient alternative to standard particle-based coarse grained approaches. In this work, we propose an automated protocol for optimisation of the effective parameters that define interaction energy density functional, based on Bayesian optimization. The machine-learning protocol makes use of an arbitrary fitness function defined upon a set of observables of relevance, which are optimally matched by an iterative process. Employing phospholipid bilayers as test systems, we demonstrate that the parameters obtained through our protocol are able to reproduce reference data better than currently employed sets derived by Flory-Huggins models. The optimisation procedure is robust and yields physically sound values. Moreover, we show that the parameters are satisfactorily transferable among chemically analogous species. Our protocol is general, and does not require heuristic a posteriori rebalancing. Therefore it is particularly suited for optimisation of reliable hybrid particle-field potentials of complex chemical mixtures, and extends the applicability corresponding simulations to all those systems for which calibration of the density functionals may not be done via simple theoretical models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源