论文标题

基于学习的非线性控制系统的符号摘要

Learning-based Symbolic Abstractions for Nonlinear Control Systems

论文作者

Hashimoto, Kazumune, Saoud, Adnane, Kishida, Masako, Ushio, Toshimitsu, Dimarogonas, Dimos

论文摘要

已知符号模型或抽象是具有逻辑规范的网络物理系统(CPS)控制设计的强大工具。在本文中,我们研究了一种基于学习的新方法,用于构建非线性控制系统的符号模型。特别是,符号模型是根据基于状态空间探索的训练数据以及代表相对于原始控制系统的行为关系的交替模拟关系的概念而构建的。此外,我们旨在实现安全的探索,这意味着系统的轨迹保证在收集培训数据的同时一直处于安全区域。此外,我们提供了一些技术,以减少记忆和计算时间,构建符号模型和安全控制器合成的计算负载,从而使我们的方法实用。最后,数值模拟说明了提出的方法的有效性。

Symbolic models or abstractions are known to be powerful tools for the control design of cyber-physical systems (CPSs) with logic specifications. In this paper, we investigate a novel learning-based approach to the construction of symbolic models for nonlinear control systems. In particular, the symbolic model is constructed based on learning the un-modeled part of the dynamics from training data based on state-space exploration, and the concept of an alternating simulation relation that represents behavioral relationships with respect to the original control system. Moreover, we aim at achieving safe exploration, meaning that the trajectory of the system is guaranteed to be in a safe region for all times while collecting the training data. In addition, we provide some techniques to reduce the computational load, in terms of memory and computation time, of constructing the symbolic models and the safety controller synthesis, so as to make our approach practical. Finally, a numerical simulation illustrates the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源