论文标题

胶水空间而没有识别点

Glueing spaces without identifying points

论文作者

de Souza, Lucas H. R.

论文摘要

在本文中,我们开发了拓扑空间的Artin-Wraith胶水理论。作为一种应用,我们表明,与粗大结构一致的粗空间的某些类别在粗大的等价下是不变的。因此,如果x和y是一些表现良好的度量空间,那么它们具有相同的末端空间(概括了众所周知的事实,该事实可在准等级适当的地理测量空间上起作用)。作为另一个应用程序,我们表明,对于每一个紧凑的Metrizable Space $ y $,只有一个,达到同质形态,Cantor Set的紧凑型减去一点点,使得其余的同构为同型至$ y $。

In this paper we develop the theory of Artin-Wraith glueings for topological spaces. As an application, we show that some categories of compactifications of coarse spaces that agree with the coarse structures are invariant under coarse equivalences. As a consequence, if X and Y are some well behaved metric spaces that are coarse equivalent, then they have the same space of ends (generalizing the well known fact that works on quasi-isometric proper geodesic metric spaces). As another application, we show that for every compact metrizable space $Y$, there exists only one, up to homeomorphisms, compactification of the Cantor set minus one point such that the remainder is homeomorphic to $Y$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源