论文标题
通过高斯过程回归对未知动力系统的安全验证
Safety Verification of Unknown Dynamical Systems via Gaussian Process Regression
论文作者
论文摘要
在非结构化环境中运行的自主系统的部署需要算法来验证其安全性。由于控制软件中的黑色框组件或防止基于模型的验证的动力学,这可能是具有挑战性的。我们从给定的一组动力学观察结果中为未知的动态系统提供了一个新颖的验证框架。该框架使用在此数据集上训练的高斯流程,将系统抽象为一个不确定的马尔可夫过程,其在安全集中定义的离散状态。抽象的过渡范围是从回归和基础系统之间的概率误差界得出的。现有的方法来验证Markov流程上的安全性能,然后产生安全保证。我们在几个示例中演示了该框架的多功能性,包括开关和非线性系统。
The deployment of autonomous systems that operate in unstructured environments necessitates algorithms to verify their safety. This can be challenging due to, e.g., black-box components in the control software, or undermodelled dynamics that prevent model-based verification. We present a novel verification framework for an unknown dynamical system from a given set of noisy observations of the dynamics. Using Gaussian processes trained on this data set, the framework abstracts the system as an uncertain Markov process with discrete states defined over the safe set. The transition bounds of the abstraction are derived from the probabilistic error bounds between the regression and underlying system. An existing approach for verifying safety properties over uncertain Markov processes then generates safety guarantees. We demonstrate the versatility of the framework on several examples, including switched and nonlinear systems.