论文标题

在辐射磁盘中的行星芯上实心积聚

Solid accretion onto planetary cores in radiative disks

论文作者

Zormpas, Apostolos, Picogna, Giovanni, Ercolano, Barbara, Kley, Wilhelm

论文摘要

在磁盘寿命内种植气体巨大行星岩心所必需的固体积聚率一直是行星形成理论的主要限制。我们通过3D辐射流动力学测试了嵌入其出生磁盘中不同质量的行星核心的固体积聚率效率,在那里我们遵循了一群不同尺寸的嵌入固体的演变。我们发现,使用状态和辐射冷却的现实方程式,在5 AU处的磁盘能够有效冷却并降低其纵横比。结果,在核心生长到10个地球质量之前,到达卵石隔离质量,有效地停止了卵石通量并产生过渡盘。此外,减少的隔离质量在核心达到临界质量之前停止了固体积聚,从而导致了巨型行星形成的障碍,它解释了观察到的人群中大量的超级地球行星。

The solid accretion rate, necessary to grow gas giant planetary cores within the disk lifetime, has been a major constraint for theories of planet formation. We tested the solid accretion rate efficiency on planetary cores of different masses embedded in their birth disk, by means of 3D radiation-hydrodynamics, where we followed the evolution of a swarm of embedded solids of different sizes. We found that using a realistic equation of state and radiative cooling, the disk at 5 au is able to cool efficiently and reduce its aspect ratio. As a result, the pebble isolation mass is reached before the core grows to 10 Earth masses, stopping efficiently the pebble flux and creating a transition disk. Moreover, the reduced isolation mass halts the solid accretion before the core reaches the critical mass, leading to a barrier to giant planet formation, and it explains the large abundance of super-Earth planets in the observed population.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源