论文标题
说唱歌手:通过性能计数器预防勒索软件
RAPPER: Ransomware Prevention via Performance Counters
论文作者
论文摘要
勒索软件可以产生直接和可控制的经济损失,这使其成为网络安全中最突出的威胁之一。根据最新的统计数据,2017年第一季度报告的一半以上的Malwares是赎金,并且有强大的威胁是新手网络犯罪分子可以使用勒索软件即服务。基于公钥的数据绑架和随后的勒索的概念是在1996年引入的。从那时起,勒索软件的变体出现了不同的加密系统和较大的密钥尺寸,基础技术保持不变。尽管文献中有一些作品提出了一个通用框架来检测加密货币赎金,但我们提出了一个两步的无监督检测工具,当怀疑过程活动是恶意的时,会发出警报,以在第二步中进行进一步的分析并以最小的痕迹检测到它。两个步骤检测框架 - 说唱歌手使用人工神经网络和快速的傅立叶变换来开发高度准确,快速和可靠的解决方案,以使用最小的痕量点来勒索软件检测。我们还引入了一个特殊的检测模块,以成功识别潜在勒索软件操作的磁盘加密过程,既有相似的特征,却具有不同的目标。我们提供了一个全面的解决方案,可以根据软件安全性解决与加密货币赎金有关的几乎所有方案(标准基准,磁盘加密和常规高度计算过程)。
Ransomware can produce direct and controllable economic loss, which makes it one of the most prominent threats in cyber security. As per the latest statistics, more than half of malwares reported in Q1 of 2017 are ransomwares and there is a potent threat of a novice cybercriminals accessing ransomware-as-a-service. The concept of public-key based data kidnapping and subsequent extortion was introduced in 1996. Since then, variants of ransomware emerged with different cryptosystems and larger key sizes, the underlying techniques remained same. Though there are works in literature which proposes a generic framework to detect the crypto ransomwares, we present a two step unsupervised detection tool which when suspects a process activity to be malicious, issues an alarm for further analysis to be carried in the second step and detects it with minimal traces. The two step detection framework- RAPPER uses Artificial Neural Network and Fast Fourier Transformation to develop a highly accurate, fast and reliable solution to ransomware detection using minimal trace points. We also introduce a special detection module for successful identification of disk encryption processes from potential ransomware operations, both having similar characteristics but with different objective. We provide a comprehensive solution to tackle almost all scenarios (standard benchmark, disk encryption and regular high computational processes) pertaining to the crypto ransomwares in light of software security.