论文标题
关于代数差方程系统的维度
On the dimension of systems of algebraic difference equations
论文作者
论文摘要
我们为代数差方程系统的解决方案集介绍了一个尺寸的概念,该方程式在确定序列环中的解时,该方程衡量了自由度。这个数字不必是整数,但是,正如我们所显示的那样,它满足适用于维度概念的属性。我们还表明,差异的尺寸是由其一组指数的覆盖密度给出的。
We introduce a notion of dimension for the solution set of a system of algebraic difference equations that measures the degrees of freedom when determining a solution in the ring of sequences. This number need not be an integer, but, as we show, it satisfies properties suitable for a notion of dimension. We also show that the dimension of a difference monomial is given by the covering density of its set of exponents.