论文标题
在普通金属频道超导体连接处,疾病的障碍$ p $ - 波和奇数依赖性
Disorder-robust $p$-wave pairing with odd frequency dependence in normal metal-conventional superconductor junctions
论文作者
论文摘要
我们研究了传统的旋转旋转$ s $ - 波超导体与无序的正常金属之间的连接中引起的超导对相关性。根据时间域中的对称性分解振幅,我们证明了奇数或等效的奇数频率,旋转旋转$ p $ - 波 - 波相关性在大小上都显着,并且完全可靠地抵抗随机的非磁性疾病。我们发现这些奇怪的相关性甚至可以通过混乱产生。我们的结果表明,各向异性奇数配对代表了无序超导杂种结构中接近性诱导的相关性的重要一部分。
We investigate the induced superconducting pair correlations in junctions between a conventional spin-singlet $s$-wave superconductor and a disordered normal metal. Decomposing the pair amplitude based on its symmetries in the time domain, we demonstrate that the odd-time, or equivalently odd-frequency, spin-singlet $p$-wave correlations are both significant in size and entirely robust against random non-magnetic disorder. We find that these odd-frequency correlations can even be generated by disorder. Our results show that anisotropic odd-frequency pairing represent an important fraction of the proximity-induced correlations in disordered superconducting hybrid structures.