论文标题

神经条件事件时间模型

Neural Conditional Event Time Models

论文作者

Engelhard, Matthew, Berchuck, Samuel, D'Arcy, Joshua, Henao, Ricardo

论文摘要

事件时间模型预测基于已知功能的感兴趣事件的发生时间。最近的工作表明,神经网络在各种环境中实现了最新的事件时间预测。但是,标准事件时间模型假设事件最终在所有情况下都发生。因此,在a)事件发生的可能性和b)预测发生的时间之间没有区别。当预测医疗诊断,设备缺陷,社交媒体帖子和其他可能发生或可能发生的事件时,这种区别至关重要,并且影响a)的功能可能与影响b)不同。在这项工作中,我们开发了一个有条件的事件时间模型,该模型将这些组件区分开来,将其实现为具有有限事件发生的二进制随机层的神经网络,并通过最大似然估计显示了如何从右审查的事件时间学习。结果表明,关于合成数据,医疗事件(模拟III)和社交媒体帖子(REDDIT)的卓越事件发生和事件时间预测,包括21个总预测任务。

Event time models predict occurrence times of an event of interest based on known features. Recent work has demonstrated that neural networks achieve state-of-the-art event time predictions in a variety of settings. However, standard event time models suppose that the event occurs, eventually, in all cases. Consequently, no distinction is made between a) the probability of event occurrence, and b) the predicted time of occurrence. This distinction is critical when predicting medical diagnoses, equipment defects, social media posts, and other events that or may not occur, and for which the features affecting a) may be different from those affecting b). In this work, we develop a conditional event time model that distinguishes between these components, implement it as a neural network with a binary stochastic layer representing finite event occurrence, and show how it may be learned from right-censored event times via maximum likelihood estimation. Results demonstrate superior event occurrence and event time predictions on synthetic data, medical events (MIMIC-III), and social media posts (Reddit), comprising 21 total prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源