论文标题

使用量子规则生长随机图

Growing Random Graphs with Quantum Rules

论文作者

Jnane, Hamza, Di Molfetta, Giuseppe, Miatto, Filippo M.

论文摘要

随机图是复杂动力网络(例如互联网,大脑或社会经济现象)的研究的核心要素。生成随机图的新方法可以产生新的应用程序,并洞悉更既定的技术。我们提出了一个模型的两种变体,以基于图形上的连续时间量子步行而生长随机图和树。随机特征时间后,测量步行者的位置,并将新节点连接到步行者崩溃的节点。这种动态系统让人联想到量子力学中自发崩溃理论的类别。我们研究了单个量子步行者和两个非相互作用的步行者的自发崩溃的几个速率。我们猜想(并报告一些数值证据)表明模型是不含规模的。

Random graphs are a central element of the study of complex dynamical networks such as the internet, the brain, or socioeconomic phenomena. New methods to generate random graphs can spawn new applications and give insights into more established techniques. We propose two variations of a model to grow random graphs and trees, based on continuous-time quantum walks on the graphs. After a random characteristic time, the position of the walker(s) is measured and new nodes are attached to the nodes where the walkers collapsed. Such dynamical systems are reminiscent of the class of spontaneous collapse theories in quantum mechanics. We investigate several rates of this spontaneous collapse for an individual quantum walker and for two non-interacting walkers. We conjecture (and report some numerical evidence) that the models are scale-free.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源