论文标题

过去和最近对无限sublinear椭圆形问题的贡献

Past and recent contributions to indefinite sublinear elliptic problems

论文作者

Kaufmann, Uriel, Quoirin, Humberto Ramos, Umezu, Kenichiro

论文摘要

我们在平滑的有界域$ - ω\ subset \ subset \ mathbb {r}^{n} $中,在平滑的有限域$-Δu= a(x)u^{q} $中审查无限的sublinear椭圆方程$-ΔU= a(x)u^{q} $,带有dirichlet或neumann均质边界条件。在这里$ 0 <q <1 $,$ a $是连续的,并且更改标志,在这种情况下,强大的最大原则不适用。结果,这些问题的非负解决方案集具有丰富的结构,尤其是死亡核心和/或积极的解决方案。总体而言,我们对积极解决方案的存在$ a $ a和$ q $的足够和必要的条件感兴趣。我们描述了过去几十年的主要结果,并将其与我们最近的贡献相结合。简要概述了证明。

We review the indefinite sublinear elliptic equation $-Δu=a(x)u^{q}$ in a smooth bounded domain $Ω\subset\mathbb{R}^{N}$, with Dirichlet or Neumann homogeneous boundary conditions. Here $0<q<1$ and $a$ is continuous and changes sign, in which case the strong maximum principle does not apply. As a consequence, the set of nonnegative solutions of these problems has a rich structure, featuring in particular both dead core and/or positive solutions. Overall, we are interested in sufficient and necessary conditions on $a$ and $q$ for the existence of positive solutions. We describe the main results from the past decades, and combine it with our recent contributions. The proofs are briefly sketched.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源