论文标题

通过量子测量的监督学习

Supervised Learning with Quantum Measurements

论文作者

González, Fabio A., Vargas-Calderón, Vladimir, Vinck-Posada, Herbert

论文摘要

本文报告了一种基于支持量子力学的数学形式主义的监督机器学习的新方法。该方法使用投射量子测量作为构建预测函数的一种方式。具体而言,输入和输出变量之间的关系表示为两分量子系统的状态。该状态是从训练样本估计的,通过平均过程产生密度矩阵。通过使用运算符对两部分系统进行投影测量,从新的输入样本中制备,并应用部分轨迹以获得代表输出的子系统的状态,对新样本进行了预测。该方法可以看作是贝叶斯推理分类的概括和一种基于内核的学习方法。该方法的一个显着特征是它不需要通过优化学习任何参数。我们用不同的2-D分类基准问题和不同的量子信息编码说明了该方法。

This paper reports a novel method for supervised machine learning based on the mathematical formalism that supports quantum mechanics. The method uses projective quantum measurement as a way of building a prediction function. Specifically, the relationship between input and output variables is represented as the state of a bipartite quantum system. The state is estimated from training samples through an averaging process that produces a density matrix. Prediction of the label for a new sample is made by performing a projective measurement on the bipartite system with an operator, prepared from the new input sample, and applying a partial trace to obtain the state of the subsystem representing the output. The method can be seen as a generalization of Bayesian inference classification and as a type of kernel-based learning method. One remarkable characteristic of the method is that it does not require learning any parameters through optimization. We illustrate the method with different 2-D classification benchmark problems and different quantum information encodings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源