论文标题

部分可观测时空混沌系统的无模型预测

On quaternion algebras over some extensions of quadratic number fields

论文作者

Acciaro, Vincenzo, Savin, Diana, Taous, Mohammed, Zekhnini, Abdelkader

论文摘要

Let $p$ and $q$ be two positive primes. Let $\ell$ be an odd positive prime integer and $F$ a quadratic number field.让$ k $是$ f $的扩展名,这样$ k $是$ \ q $ $ \ ell $ $ \ ell $ over $ f $或$ k $的二面延伸,是一个abelian $ \ ell $ - 假设$ \ el $ $ \ ell $ dive dive dive niff $ f $。 In this paper, we obtain a complete characterization of division quaternion algebras $H_{K}(p, q)$ over $K$.

Let $p$ and $q$ be two positive primes. Let $\ell$ be an odd positive prime integer and $F$ a quadratic number field. Let $K$ be an extension of $F$ such that $K$ is a dihedral extension of $\Q$ of degree $\ell$ over $F$ or $K$ is an abelian $\ell$-extension unramified over $F$ assuming $\ell$ divides the class number of $F$. In this paper, we obtain a complete characterization of division quaternion algebras $H_{K}(p, q)$ over $K$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源