论文标题
建模动态异质网络,以使用暂时RNN的分层注意来进行链路预测
Modeling Dynamic Heterogeneous Network for Link Prediction using Hierarchical Attention with Temporal RNN
论文作者
论文摘要
网络嵌入旨在学习节点的低维表示,同时捕获网络的结构信息。它在网络分析的许多任务(例如链接预测和节点分类)上取得了巨大成功。大多数现有的网络嵌入算法都集中在如何有效学习静态均匀网络上。但是,现实世界中的网络更为复杂,例如,网络可能由几种类型的节点和边缘组成(称为异质信息),并且随着时间的流逝可能会随着动态节点和边缘(称为进化模式)而变化。对于动态异质网络的网络嵌入,已经完成了有限的工作,因为同时学习进化和异质信息是一项挑战。在本文中,我们提出了一种新型的动态异质网络嵌入方法,称为Dyhatr,该方法使用层次的注意来学习异质信息,并将复发性神经网络纳入了暂时的关注以捕获进化模式。我们在四个现实世界数据集上基于链接预测任务进行基准测试。实验结果表明,Dyhatr的表现明显优于几个最先进的基线。
Network embedding aims to learn low-dimensional representations of nodes while capturing structure information of networks. It has achieved great success on many tasks of network analysis such as link prediction and node classification. Most of existing network embedding algorithms focus on how to learn static homogeneous networks effectively. However, networks in the real world are more complex, e.g., networks may consist of several types of nodes and edges (called heterogeneous information) and may vary over time in terms of dynamic nodes and edges (called evolutionary patterns). Limited work has been done for network embedding of dynamic heterogeneous networks as it is challenging to learn both evolutionary and heterogeneous information simultaneously. In this paper, we propose a novel dynamic heterogeneous network embedding method, termed as DyHATR, which uses hierarchical attention to learn heterogeneous information and incorporates recurrent neural networks with temporal attention to capture evolutionary patterns. We benchmark our method on four real-world datasets for the task of link prediction. Experimental results show that DyHATR significantly outperforms several state-of-the-art baselines.