论文标题

通过基于人群的增强来改善3D对象检测

Improving 3D Object Detection through Progressive Population Based Augmentation

论文作者

Cheng, Shuyang, Leng, Zhaoqi, Cubuk, Ekin Dogus, Zoph, Barret, Bai, Chunyan, Ngiam, Jiquan, Song, Yang, Caine, Benjamin, Vasudevan, Vijay, Li, Congcong, Le, Quoc V., Shlens, Jonathon, Anguelov, Dragomir

论文摘要

数据增强已被广泛用于3D点云中的对象检测。但是,所有先前相关的工作都集中在手动设计各个体系结构的特定数据增强方法。在这项工作中,我们提出了第一次尝试为3D对象检测设计数据增强策略的尝试。我们介绍了基于人群的渐进式增强(PPBA)算法,该算法学会通过缩小搜索空间并采用以前迭代中发现的最佳参数来优化增强策略。在KITTI 3D检测测试集中,PPBA通过在中等难度类别的汽车,行人和骑自行车的人的中等难度类别上提高了Starnet检测器,表现优于所有当前最新的单阶段单阶段检测模型。 Waymo打开数据集上的其他实验表明,与Kitti相比,PPBA继续有效地改善了20倍数据集上的Starnet和Pointpillars探测器。改进的幅度可能与3D感知体系结构的进步相提并论,而收益在推理时没有成本。在随后的实验中,我们发现PPBA的数据效率可能比基线3D检测模型高出10倍,而无需增强,这强调了3D检测模型可以实现竞争精度,而标记的示例却少得多。

Data augmentation has been widely adopted for object detection in 3D point clouds. However, all previous related efforts have focused on manually designing specific data augmentation methods for individual architectures. In this work, we present the first attempt to automate the design of data augmentation policies for 3D object detection. We introduce the Progressive Population Based Augmentation (PPBA) algorithm, which learns to optimize augmentation strategies by narrowing down the search space and adopting the best parameters discovered in previous iterations. On the KITTI 3D detection test set, PPBA improves the StarNet detector by substantial margins on the moderate difficulty category of cars, pedestrians, and cyclists, outperforming all current state-of-the-art single-stage detection models. Additional experiments on the Waymo Open Dataset indicate that PPBA continues to effectively improve the StarNet and PointPillars detectors on a 20x larger dataset compared to KITTI. The magnitude of the improvements may be comparable to advances in 3D perception architectures and the gains come without an incurred cost at inference time. In subsequent experiments, we find that PPBA may be up to 10x more data efficient than baseline 3D detection models without augmentation, highlighting that 3D detection models may achieve competitive accuracy with far fewer labeled examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源