论文标题

SSHFD:单枪,人类跌落的检测,具有遮挡的关节弹性

SSHFD: Single Shot Human Fall Detection with Occluded Joints Resilience

论文作者

Asif, Umar, Von Cavallar, Stefan, Tang, Jianbin, Harrer, Stefan

论文摘要

跌倒会对老年人造成致命后果,特别是如果由于意识丧失或任何伤害而无法寻求帮助时。自动秋季检测系统可以通过迅速的秋季警报有助于帮助,并最大程度地减少对在家中独立生活时跌倒的恐惧。由于挑战,例如物理外观的变化,不同的摄像头观点,遮挡和背景混乱,现有基于视觉的秋季检测系统缺乏对看不见的环境的概括。在本文中,我们探讨了克服上述挑战的方法,并介绍了单一镜头人类跌落探测器(SSHFD),这是一个基于深度学习的框架,用于从单个图像中自动跌落检测。这是通过两项关键创新实现的。首先,我们提出一个基于人姿势的秋天表示,这是外观特征不变的。其次,我们提出了用于3D姿势估计和跌落识别的神经网络模型,这对于由于身体部位堵塞而导致缺失的关节有弹性。公共秋季数据集的实验表明,我们的框架成功地传输了3D姿势估计和秋季识别的知识,这纯粹是从合成数据中学到的,以看不见现实世界数据,展示了其在现实世界情景中准确跌落检测的概括能力。

Falling can have fatal consequences for elderly people especially if the fallen person is unable to call for help due to loss of consciousness or any injury. Automatic fall detection systems can assist through prompt fall alarms and by minimizing the fear of falling when living independently at home. Existing vision-based fall detection systems lack generalization to unseen environments due to challenges such as variations in physical appearances, different camera viewpoints, occlusions, and background clutter. In this paper, we explore ways to overcome the above challenges and present Single Shot Human Fall Detector (SSHFD), a deep learning based framework for automatic fall detection from a single image. This is achieved through two key innovations. First, we present a human pose based fall representation which is invariant to appearance characteristics. Second, we present neural network models for 3d pose estimation and fall recognition which are resilient to missing joints due to occluded body parts. Experiments on public fall datasets show that our framework successfully transfers knowledge of 3d pose estimation and fall recognition learnt purely from synthetic data to unseen real-world data, showcasing its generalization capability for accurate fall detection in real-world scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源