论文标题

与委员会共识的基于区块链的分散联合学习框架

A Blockchain-based Decentralized Federated Learning Framework with Committee Consensus

论文作者

Li, Yuzheng, Chen, Chuan, Liu, Nan, Huang, Huawei, Zheng, Zibin, Yan, Qiang

论文摘要

联邦学习已被广​​泛研究并应用于各种情况。在移动计算方案中,联合学习可以保护用户揭露其私人数据,同时合作培训各种现实世界应用程序的全球模型。但是,由于恶意客户端或中央服务器对全球模型或用户隐私数据的不断攻击,联合学习的安全性越来越受到质疑。为了解决这些安全问题,我们提出了一个基于区块链的分散联合学习框架,即与委员会共识(BFLC)的基于区块链的联合学习框架(BFLC)。该框架使用区块链用于全局模型存储和本地模型更新交换。为了实现拟议的BFLC,我们还设计了创新的委员会共识机制,该机制可以有效地减少共识计算的数量并减少恶意攻击。然后,我们讨论了BFLC的可伸缩性,包括理论安全,存储优化和激励措施。最后,我们使用现实世界数据集进行了实验,以验证BFLC框架的有效性。

Federated learning has been widely studied and applied to various scenarios. In mobile computing scenarios, federated learning protects users from exposing their private data, while cooperatively training the global model for a variety of real-world applications. However, the security of federated learning is increasingly being questioned, due to the malicious clients or central servers' constant attack to the global model or user privacy data. To address these security issues, we proposed a decentralized federated learning framework based on blockchain, i.e., a Blockchain-based Federated Learning framework with Committee consensus (BFLC). The framework uses blockchain for the global model storage and the local model update exchange. To enable the proposed BFLC, we also devised an innovative committee consensus mechanism, which can effectively reduce the amount of consensus computing and reduce malicious attacks. We then discussed the scalability of BFLC, including theoretical security, storage optimization, and incentives. Finally, we performed experiments using real-world datasets to verify the effectiveness of the BFLC framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源