论文标题

通过重叠的光信号,具有数据驱动触摸感测的传感器多凹机器人手指

A Sensorized Multicurved Robot Finger with Data-driven Touch Sensing via Overlapping Light Signals

论文作者

Piacenza, Pedro, Behrman, Keith, Schifferer, Benedikt, Kymissis, Ioannis, Ciocarlie, Matei

论文摘要

尽管触摸和力转导的显着进步,但在机器人操作中,触觉传感仍然远非无处不在。事实证明,现有的构建触摸传感器的方法由于多个挑战而难以集成到机器人的手指中,包括难以覆盖多层表面,高线数或包装限制,从而阻止了它们在灵巧的手中的使用。在本文中,我们提出了一个多凹机器人手指,具有准确的触摸定位和在复合物三维表面上的正常力检测。我们方法的关键是新颖使用来自光发射器和接收器的重叠信号,这些信号嵌入了透明的波导层中,该信号覆盖了手指的功能区域。通过测量每个发射极和接收器之间的光传输,我们表明我们可以获得一个非常丰富的信号集,该集合会因触摸引起的手指变形而变化。然后,我们证明纯数据驱动的深度学习方法能够从此类数据(例如联系人位置和应用正常力量)中提取有用的信息,而无需进行分析模型。最终结果是一种完全集成的,有传感器的机器人手指,具有低的电线计数,并使用易于访问的制造方法,该方法旨在易于集成到灵活的操纵器中。

Despite significant advances in touch and force transduction, tactile sensing is still far from ubiquitous in robotic manipulation. Existing methods for building touch sensors have proven difficult to integrate into robot fingers due to multiple challenges, including difficulty in covering multicurved surfaces, high wire count, or packaging constrains preventing their use in dexterous hands. In this paper, we present a multicurved robotic finger with accurate touch localization and normal force detection over complex, three-dimensional surfaces. The key to our approach is the novel use of overlapping signals from light emitters and receivers embedded in a transparent waveguide layer that covers the functional areas of the finger. By measuring light transport between every emitter and receiver, we show that we can obtain a very rich signal set that changes in response to deformation of the finger due to touch. We then show that purely data-driven deep learning methods are able to extract useful information from such data, such as contact location and applied normal force, without the need for analytical models. The final result is a fully integrated, sensorized robot finger, with a low wire count and using easily accessible manufacturing methods, designed for easy integration into dexterous manipulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源