论文标题
关于Seiberg-witten几何形状的量化
On the Quantization of Seiberg-Witten Geometry
论文作者
论文摘要
我们提出了四维$ {\ cal n} = 2 $ seiberg-witten几何形状的双重量化,适用于所有经典仪表组和各种各样的物质内容。在Nekrasov [Arxiv:1512.05388]发起的程序之后,这可以理解为一组某些非扰动Schwinger-Dyson身份。该构建依赖于在$ \ mathbb {r}^4 $上的所谓$ω$ background上计算量规理论的intanton分区函数。两个量化参数被标识为此背景的两个参数。每个理论的Seiberg-on-witten曲线都以固定空间极限恢复。只要可能,我们就会从类型IIA弦理论中激励我们的构建。
We propose a double quantization of four-dimensional ${\cal N}=2$ Seiberg-Witten geometry, for all classical gauge groups and a wide variety of matter content. This can be understood as a set of certain non-perturbative Schwinger-Dyson identities, following the program initiated by Nekrasov [arXiv:1512.05388]. The construction relies on the computation of the instanton partition function of the gauge theory on the so-called $Ω$-background on $\mathbb{R}^4$, in the presence of half-BPS codimension 4 defects. The two quantization parameters are identified as the two parameters of this background. The Seiberg-Witten curve of each theory is recovered in the flat space limit. Whenever possible, we motivate our construction from type IIA string theory.