论文标题

星星和梳子的二元定理I:任意星星和梳子

Duality theorems for stars and combs I: Arbitrary stars and combs

论文作者

Bürger, Carl, Kurkofka, Jan

论文摘要

为了扩展无限图的众所周知的星形弯曲引理,我们表征了不包含无限梳子或无限恒星的图形,该图形附着在给定的一组顶点上。我们提供几种特征:就普通树,树状分解,无光线图和缠结分离的分离器的等级而言。

Extending the well-known star-comb lemma for infinite graphs, we characterise the graphs that do not contain an infinite comb or an infinite star, respectively, attached to a given set of vertices. We offer several characterisations: in terms of normal trees, tree-decompositions, ranks of rayless graphs and tangle-distinguishing separators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源