论文标题
从基于方案的地震危险到基于方案的滑坡危险:通过统计模拟倒退到过去
From scenario-based seismic hazard to scenario-based landslide hazard: rewinding to the past via statistical simulations
论文作者
论文摘要
绝大多数滑坡敏感性研究都认为,在“过去和现在都是未来的关键”的定义下,斜率不稳定性过程是时间不变的。这个假设通常可能是有效的。但是,触发因素,无论是降雨还是地震事件,显然会随着时间而变化。然而,触发器的时间部分很少被包括在滑坡易感性研究中,仅限于危险评估。在这项工作中,我们调查了针对2017年的柔和地震($ M_W = 6.5 $)触发的一系列滑坡,其中包括分析中相关的地面运动,这些地震是在坡度单位(SU)水平进行的。我们通过实施贝叶斯版本的广义加性模型来做到这一点,并假设研究区域中SU的斜率不稳定性根据Bernoulli概率分布的行为。该过程通常会产生一个易感图,以反映特定触发器的空间模式,因此用于土地利用计划的使用有限。但是,我们实施了第一个分析步骤,以可靠地估计地面运动效应及其分布对不稳定的SU。然后,我们假设地面运动的效果是时间不变的,可以为从1933年到2017年在该地区发生的任何地面运动场景实现统计模拟。结果,我们获得了上个世纪的潜在敏感性模式的完整范围,并将此信息压缩为自1933年3月以来的所有可能的地面运动模型。对于基于方案的地面运动,也可以在向前方向上使用它来估计未来的不稳定斜率。
The vast majority of landslide susceptibility studies assumes the slope instability process to be time-invariant under the definition that "the past and present are keys to the future". This assumption may generally be valid. However, the trigger, be it a rainfall or an earthquake event, clearly varies over time. And yet, the temporal component of the trigger is rarely included in landslide susceptibility studies and only confined to hazard assessment. In this work, we investigate a population of landslides triggered in response to the 2017 Jiuzhaigou earthquake ($M_w = 6.5$) including the associated ground motion in the analyses, these being carried out at the Slope Unit (SU) level. We do this by implementing a Bayesian version of a Generalized Additive Model and assuming that the slope instability across the SUs in the study area behaves according to a Bernoulli probability distribution. This procedure would generally produce a susceptibility map reflecting the spatial pattern of the specific trigger and therefore of limited use for land use planning. However, we implement this first analytical step to reliably estimate the ground motion effect, and its distribution, on unstable SUs. We then assume the effect of the ground motion to be time-invariant, enabling statistical simulations for any ground motion scenario that occurred in the area from 1933 to 2017. As a result, we obtain the full spectrum of potential susceptibility patterns over the last century and compress this information into a susceptibility model/map representative of all the possible ground motion patterns since 1933. This backward statistical simulations can also be further exploited in the opposite direction where, by accounting for scenario-based ground motion, one can also use it in a forward direction to estimate future unstable slopes.