论文标题

对无线电资源分配的深度学习,具有5G的服务质量要求

Deep Learning for Radio Resource Allocation with Diverse Quality-of-Service Requirements in 5G

论文作者

Dong, Rui, She, Changyang, Hardjawana, Wibowo, Li, Yonghui, Vucetic, Branka

论文摘要

为了适应第五代蜂窝网络中各种服务质量(QoS)的要求,基站需要在随时间变化的网络条件下实时优化无线电资源。这带来了高计算开销和较长的处理延迟。在这项工作中,我们开发了一个深度学习框架,以近似最佳的资源分配策略,该策略通过优化带宽和传输功率分配来最大程度地降低基站的总功耗。我们发现,由于近似误差和子载波数量的近似错误和量化误差,完全连接的神经网络(NN)无法完全保证QoS要求。为了解决此问题,我们提出了NNS的级联结构,其中第一个NN近似于最佳带宽分配,第二个NN输出了通过给定带宽分配满足QoS要求所需的发射功率。考虑到无线通道的分布和无线网络中的服务类型是非平稳的,我们将深入的转移学习应用于非平稳的无线网络中的NN。仿真结果验证了级联NN的表现优于QoS保证的完全连接的NN。此外,深度转移学习可以减少训练NN所需的训练样本数量。

To accommodate diverse Quality-of-Service (QoS) requirements in the 5th generation cellular networks, base stations need real-time optimization of radio resources in time-varying network conditions. This brings high computing overheads and long processing delays. In this work, we develop a deep learning framework to approximate the optimal resource allocation policy that minimizes the total power consumption of a base station by optimizing bandwidth and transmit power allocation. We find that a fully-connected neural network (NN) cannot fully guarantee the QoS requirements due to the approximation errors and quantization errors of the numbers of subcarriers. To tackle this problem, we propose a cascaded structure of NNs, where the first NN approximates the optimal bandwidth allocation, and the second NN outputs the transmit power required to satisfy the QoS requirement with given bandwidth allocation. Considering that the distribution of wireless channels and the types of services in the wireless networks are non-stationary, we apply deep transfer learning to update NNs in non-stationary wireless networks. Simulation results validate that the cascaded NNs outperform the fully connected NN in terms of QoS guarantee. In addition, deep transfer learning can reduce the number of training samples required to train the NNs remarkably.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源