论文标题
自然复发性神经元网络中的软连线长期记忆
Soft-wired long-term memory in a natural recurrent neuronal network
论文作者
论文摘要
神经元网络为生物提供了处理信息的能力。它们还具有丰富的复发连接的特征,这引起了强烈的反馈,从而决定了它们的动态,并赋予了它们褪色(短期)记忆。另一方面,复发在长期记忆中的作用仍不清楚。在这里,我们使用round虫秀丽隐杆线虫的神经元网络表明,活生物体中的复发体系结构可以长期记忆而不依赖特定的硬连线模块。一种遗传算法表明,蠕虫神经元网络的实验观察到的动力学表现出最大的复杂性(通过置换熵测量)。在这种复杂的制度中,系统对重复演示时变刺激的响应揭示了一种一致的行为,可以将其解释为柔软的长期记忆。
Neuronal networks provide living organisms with the ability to process information. They are also characterized by abundant recurrent connections, which give rise to strong feedback that dictates their dynamics and endows them with fading (short-term) memory. The role of recurrence in long-term memory, on the other hand, is still unclear. Here we use the neuronal network of the roundworm C. elegans to show that recurrent architectures in living organisms can exhibit long-term memory without relying on specific hard-wired modules. A genetic algorithm reveals that the experimentally observed dynamics of the worm's neuronal network exhibits maximal complexity (as measured by permutation entropy). In that complex regime, the response of the system to repeated presentations of a time-varying stimulus reveals a consistent behavior that can be interpreted as soft-wired long-term memory.