论文标题
电力法动力学系统中的绝对浓度鲁棒性
Absolute concentration robustness in power law kinetic systems
论文作者
论文摘要
绝对浓度鲁棒性(ACR)是一种条件,即化学动力学系统中的物种在任何正稳态中都具有相同的值,而无论初始条件如何,网络可能会承认。到目前为止,在ACR中心的化学动力学系统中,结果不足。在这一贡献中,我们使用化学反应网络动态等效性的想法来得出新的结果,以保证某些类别的功率定律动力学系统的ACR为零。此外,使用网络分解,我们通过考虑存在与ACR的低缺陷子网络的存在,以识别高缺陷网络中的ACR(即缺乏症$ \ geq $ 2)。网络分解还使我们能够识别并定义了比ACR的浓度鲁棒性较弱的形式,我们将其称为“平衡浓度鲁棒性”。最后,我们还讨论并强调了我们对ACR作为动力学特征的看法,而不是由结构来源产生的条件。
Absolute concentration robustness (ACR) is a condition wherein a species in a chemical kinetic system possesses the same value for any positive steady state the network may admit regardless of initial conditions. Thus far, results on ACR center on chemical kinetic systems with deficiency one. In this contribution, we use the idea of dynamic equivalence of chemical reaction networks to derive novel results that guarantee ACR for some classes of power law kinetic systems with deficiency zero. Furthermore, using network decomposition, we identify ACR in higher deficiency networks (i.e. deficiency $\geq$ 2) by considering the presence of a low deficiency subnetwork with ACR. Network decomposition also enabled us to recognize and define a weaker form of concentration robustness than ACR, which we named as `balanced concentration robustness'. Finally, we also discuss and emphasize our view of ACR as a primarily kinetic character rather than a condition that arises from structural sources.