论文标题
Lorentz切线束上的重力场:广义路径和场方程
Gravitational Field on the Lorentz Tangent Bundle: Generalized Paths and Field Equations
论文作者
论文摘要
我们研究了Lorentz切线束的广义框架中重力场和颗粒的动力学。通过为每种情况变异适当的动作,我们获得了Sasaki型度量的通用路径和广义场方程。我们表明,由于局部各向异性和存在在我们的空间中诱导适应基础的非线性连接而导致的一般相对性,对Stokes定理进行了修改。
We investigate the dynamics of gravitational field and particles in a generalized framework of a Lorentz tangent bundle. By variating an appropriate action for each case, we obtain generalized forms of paths and generalized field equations for a Sasaki type metric. We show that Stokes theorem is modified with respect to general relativity due to local anisotropy and the presence of a nonlinear connection which induces an adapted basis in our space.