论文标题
带有事件摄像头的单图像光流估计
Single Image Optical Flow Estimation with an Event Camera
论文作者
论文摘要
事件摄像机是受生物启发的传感器,它们异步报告了微秒分辨率的强度变化。戴维斯可以捕获场景的高动力学,并同时输出高时间分辨率事件和低框架速率强度图像。在本文中,我们提出了一个单个图像(可能模糊)和基于事件的光流估计方法。首先,我们证明如何使用事件来改善流量估计。为此,我们通过呈现基于事件的光度一致性公式来有效地编码流量与事件之间的关系。然后,我们考虑由视觉环境中高动力学引起的图像模糊的特殊情况,并表明在模型中包括模糊形成进一步限制流动估计。这与忽略模糊图像的现有作品形成鲜明对比,而我们的公式可以自然处理模糊或尖锐的图像以实现准确的流量估计。最后,我们将流量估计以及图像脱毛降低到使用原始偶算法的目标函数的替代优化问题。与最先进的方法相比,合成数据和真实数据的实验结果(具有模糊和非毛线图像)都表明了我们的模型的优越性。
Event cameras are bio-inspired sensors that asynchronously report intensity changes in microsecond resolution. DAVIS can capture high dynamics of a scene and simultaneously output high temporal resolution events and low frame-rate intensity images. In this paper, we propose a single image (potentially blurred) and events based optical flow estimation approach. First, we demonstrate how events can be used to improve flow estimates. To this end, we encode the relation between flow and events effectively by presenting an event-based photometric consistency formulation. Then, we consider the special case of image blur caused by high dynamics in the visual environments and show that including the blur formation in our model further constrains flow estimation. This is in sharp contrast to existing works that ignore the blurred images while our formulation can naturally handle either blurred or sharp images to achieve accurate flow estimation. Finally, we reduce flow estimation, as well as image deblurring, to an alternative optimization problem of an objective function using the primal-dual algorithm. Experimental results on both synthetic and real data (with blurred and non-blurred images) show the superiority of our model in comparison to state-of-the-art approaches.