论文标题

学习选择基本类以进行几个射击分类

Learning to Select Base Classes for Few-shot Classification

论文作者

Zhou, Linjun, Cui, Peng, Jia, Xu, Yang, Shiqiang, Tian, Qi

论文摘要

近年来,很少有学习的学习吸引了密集的研究关注。已经提出了许多方法来概括从提供的基类到新颖类中学到的模型,但是以前没有工作研究如何选择基本类别,甚至没有不同的基本类别会导致学习模型的不同泛化性能。在本文中,我们利用一种简单而有效的度量,相似性比,作为几个射击模型的概括性能的指标。然后,我们将基础选择问题提出为相似性比率的suppodular优化问题。我们进一步提供了有关不同优化方法的优化下限的理论分析,这些方法可用于识别不同实验设置的最合适算法。 ImageNet,CalTech256和Cub-20011上的广泛实验表明,我们提出的方法有效地选择了更好的基本数据集。

Few-shot learning has attracted intensive research attention in recent years. Many methods have been proposed to generalize a model learned from provided base classes to novel classes, but no previous work studies how to select base classes, or even whether different base classes will result in different generalization performance of the learned model. In this paper, we utilize a simple yet effective measure, the Similarity Ratio, as an indicator for the generalization performance of a few-shot model. We then formulate the base class selection problem as a submodular optimization problem over Similarity Ratio. We further provide theoretical analysis on the optimization lower bound of different optimization methods, which could be used to identify the most appropriate algorithm for different experimental settings. The extensive experiments on ImageNet, Caltech256 and CUB-200-2011 demonstrate that our proposed method is effective in selecting a better base dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源