论文标题

任务自适应不对称的深模式哈希

Task-adaptive Asymmetric Deep Cross-modal Hashing

论文作者

Li, Fengling, Wang, Tong, Zhu, Lei, Zhang, Zheng, Wang, Xinhua

论文摘要

监督的跨模式哈希旨在将异质模态数据的语义相关性嵌入具有歧视性语义标签的二进制哈希码中。由于其在检索和存储效率方面的优势,因此广泛用于解决有效的跨模式检索。但是,现有研究同样处理跨模式检索的不同任务,并以对称方式对同一对哈希功能学习相同的哈希功能。在这种情况下,忽略了不同的跨模式检索任务的独特性,可以提出次优性能。在本文中,我们提出了一种任务自适应的不对称深模式哈希(TA-ADCMH)方法。它可以通过同时的模态表示和不对称的哈希学习来学习两个亚接网任务的任务自适应哈希功能。与以前的跨模式散列方法不同,我们的学习框架共同优化了语义保存,将多媒体数据的深度特征转化为二进制哈希码,以及直接将查询模态表示形式回归到显式标签的语义回归。借助我们的模型,二进制代码可以有效地保留不同方式之间的语义相关性,同时,可以自适应地捕获查询语义。来自许多方面的两个标准数据集证明了TA-ADCMH的优势。

Supervised cross-modal hashing aims to embed the semantic correlations of heterogeneous modality data into the binary hash codes with discriminative semantic labels. Because of its advantages on retrieval and storage efficiency, it is widely used for solving efficient cross-modal retrieval. However, existing researches equally handle the different tasks of cross-modal retrieval, and simply learn the same couple of hash functions in a symmetric way for them. Under such circumstance, the uniqueness of different cross-modal retrieval tasks are ignored and sub-optimal performance may be brought. Motivated by this, we present a Task-adaptive Asymmetric Deep Cross-modal Hashing (TA-ADCMH) method in this paper. It can learn task-adaptive hash functions for two sub-retrieval tasks via simultaneous modality representation and asymmetric hash learning. Unlike previous cross-modal hashing approaches, our learning framework jointly optimizes semantic preserving that transforms deep features of multimedia data into binary hash codes, and the semantic regression which directly regresses query modality representation to explicit label. With our model, the binary codes can effectively preserve semantic correlations across different modalities, meanwhile, adaptively capture the query semantics. The superiority of TA-ADCMH is proved on two standard datasets from many aspects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源