论文标题
对称群体的利特伍德建筑群
Littlewood Complexes for Symmetric Groups
论文作者
论文摘要
我们构建一个复杂的$ \ MATHCAL {l} _ \ bullet^λ$解决对称组的$ s_n $的不可减少表示$ \ MATHCAL {s}^{λ[n]} $,该表示由限制在$ gl_n(k)$中的表示。该结构将其提升至$ \ Mathrm {Rep}(S_ \ infty)$,在其中产生简单对象的注入性分辨率。它分类了稳定的SpecHT多项式,并允许我们了解所有$ n $的这些多项式评估。
We construct a complex $\mathcal{L}_\bullet^λ$ resolving the irreducible representations $\mathcal{S}^{λ[n]}$ of the symmetric groups $S_n$ by representations restricted from $GL_n(k)$. This construction lifts to $\mathrm{Rep}(S_\infty)$, where it yields injective resolutions of simple objects. It categorifies stable Specht polynomials, and allows us to understand evaluations of these polynomials for all $n$.