论文标题

高分辨率结构到DTI合成的歧管感知循环gan

Manifold-Aware CycleGAN for High-Resolution Structural-to-DTI Synthesis

论文作者

Anctil-Robitaille, Benoit, Desrosiers, Christian, Lombaert, Herve

论文摘要

未配对的图像到图像翻译已成功地应用于自然图像,但很少关注流形值数据,例如在扩散张量成像中(DTI)。 DTI的非欧成功人性性质可防止当前的生成对抗网络(GAN)产生合理的图像,并主要限制其应用于扩散MRI标量图,例如分数各向异性(FA)或平均扩散率(MD)。即使这些标量图在临床上有用,它们大多忽略了纤维方向,因此在分析脑纤维的应用中有限。在这里,我们提出了一个流动性自行车,它可以从未配对的T1W图像中学习高分辨率DTI的产生。我们使用对抗性和周期抗性损失损失了对称阳性确定的3x3矩阵SPD(3)的Riemannian歧管上的数据分布的最小距离最小化问题。为了确保生成的扩散张量位于SPD(3)歧管上,我们利用了欧几里得量子标准的指数和对数图的理论特性。我们证明,与标准gan不同,我们的方法能够生成现实的高分辨率DTI,可用于计算基于扩散的指标并可能运行纤维拖拉算法。为了评估模型的性能,我们计算了生成的张量主管的余弦相似性及其地面真相方向,其派生的FA值的平均平方误差(MSE)以及张量之间的对数 - 欧盟距离。我们证明,我们的方法的FA MSE比标准循环组织高2.5倍,并且比歧管感知的Wasserstein Gan高达30%,同时合成了尖锐的高分辨率DTI。

Unpaired image-to-image translation has been applied successfully to natural images but has received very little attention for manifold-valued data such as in diffusion tensor imaging (DTI). The non-Euclidean nature of DTI prevents current generative adversarial networks (GANs) from generating plausible images and has mainly limited their application to diffusion MRI scalar maps, such as fractional anisotropy (FA) or mean diffusivity (MD). Even if these scalar maps are clinically useful, they mostly ignore fiber orientations and therefore have limited applications for analyzing brain fibers. Here, we propose a manifold-aware CycleGAN that learns the generation of high-resolution DTI from unpaired T1w images. We formulate the objective as a Wasserstein distance minimization problem of data distributions on a Riemannian manifold of symmetric positive definite 3x3 matrices SPD(3), using adversarial and cycle-consistency losses. To ensure that the generated diffusion tensors lie on the SPD(3) manifold, we exploit the theoretical properties of the exponential and logarithm maps of the Log-Euclidean metric. We demonstrate that, unlike standard GANs, our method is able to generate realistic high-resolution DTI that can be used to compute diffusion-based metrics and potentially run fiber tractography algorithms. To evaluate our model's performance, we compute the cosine similarity between the generated tensors principal orientation and their ground-truth orientation, the mean squared error (MSE) of their derived FA values and the Log-Euclidean distance between the tensors. We demonstrate that our method produces 2.5 times better FA MSE than a standard CycleGAN and up to 30% better cosine similarity than a manifold-aware Wasserstein GAN while synthesizing sharp high-resolution DTI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源