论文标题
非线性多尺度结构动力学模型的原位自适应减少
In-situ adaptive reduction of nonlinear multiscale structural dynamics models
论文作者
论文摘要
在参数空间的预定区域中对降低基础的传统离线训练会导致易于外推的参数降低阶模型。每当查询参数点位于参数空间的未探索区域时,此漏洞就会显现出来。本文通过在默认在线执行计算,并根据需要进行离线移动,从而解决了非线性模型减少的原位自适应框架来解决此问题。该框架基于局部还原碱基(ROBS)数据库的概念,其中在感兴趣的参数空间中定义了局部性。它通过在预先计算的Rob上更新并使用一系列最适合的本地rob序列来实现精确度。它通过管理本地ROB的维度并在此过程中纳入超重还原来实现效率。虽然足够全面,但框架是在固体力学中动态多尺度计算的背景下描述的。在这种情况下,即使在宏观问题的非参数设置中,当所有离线,在线和适应间接费用成本都被解释时,提议的计算框架也可以通过一个三维的三维,非线性,多尺度计算加速,而无需损害准确的准确性。
Conventional offline training of reduced-order bases in a predetermined region of a parameter space leads to parametric reduced-order models that are vulnerable to extrapolation. This vulnerability manifests itself whenever a queried parameter point lies in an unexplored region of the parameter space. This paper addresses this issue by presenting an in-situ, adaptive framework for nonlinear model reduction where computations are performed by default online, and shifted offline as needed. The framework is based on the concept of a database of local Reduced-Order Bases (ROBs), where locality is defined in the parameter space of interest. It achieves accuracy by updating on-the-fly a pre-computed ROB, and approximating the solution of a dynamical system along its trajectory using a sequence of most-appropriate local ROBs. It achieves efficiency by managing the dimension of a local ROB, and incorporating hyperreduction in the process. While sufficiently comprehensive, the framework is described in the context of dynamic multiscale computations in solid mechanics. In this context, even in a nonparametric setting of the macroscale problem and when all offline, online, and adaptation overhead costs are accounted for, the proposed computational framework can accelerate a single three-dimensional, nonlinear, multiscale computation by an order of magnitude, without compromising accuracy.