论文标题
$ l^2(\ Mathbb {r}^+)$上的正交碱基
Orthonormal bases on $L^2(\mathbb{R}^+)$
论文作者
论文摘要
我们得出了自adexhixhexhexhixexextement $h_ξ$的显式形式,由$ h_配对$ h_h_ξ$,由$ en \ in \ langle 0,π),$ h = - \ h = - \ frac {d^2} {d x^2 x^2} + frac {x^2} $ oct y spect {x^2} $ contect $ h = - $ l^2(\ mathbb {r}^+)。$对于每个$ξ$,eigenVectors的集合形成了$ l^2(\ Mathbb {r}^+)的正顺序基础。$
We derive the explicit form of eigenvectors of selfadjoint extension $H_ξ$, parametrized by $ξ\in \langle 0,π),$ of differential expression $ H=-\frac{d^2 }{d x^2} + \frac{x^2 }{4}$ together with the spectrum $σ(H_ξ)$ on the space $L^2(\mathbb{R}^+).$ For each $ξ$ the set of eigenvectors form an orthonormal basis of $L^2(\mathbb{R}^+).$