论文标题
LC-振动的模量B分散器的对数丰度
Log abundance of the moduli b-divisors of lc-trivial fibrations
论文作者
论文摘要
我们证明,来自对数规范对的LC-振动的模量B径都很丰富。结果是根据一个基于LC平凡的形态学理论的模量b划分的定理,该理论使我们能够治疗$ \ mathbb {r} $ - 可能与纤维相关的纤维可能会处理$ \ mathbb {r} $ - 适当的形态。我们还证明了将有限的覆盖层扩展到封闭的子各种的定理上,以在任意特征的各种情况下。
We prove that the moduli b-divisor of an lc-trivial fibration from a log canonical pair is log abundant. The result follows from a theorem on the restriction of the moduli b-divisor, based on a theory of lc-trivial morphisms, which allows us to treat $\mathbb{R}$-divisors and proper morphisms possibly with disconnected fibres. We also prove a theorem on extending a finite cover over a closed subvariety to that over a variety in arbitrary characteristic.