论文标题

基于X射线图像的自动检测和分类肺炎的自动化方法使用深度学习

Automated Methods for Detection and Classification Pneumonia based on X-Ray Images Using Deep Learning

论文作者

Asnaoui, Khalid El, Chawki, Youness, Idri, Ali

论文摘要

最近,全球研究人员,专家和公司正在推出基于深度学习和图像处理的系统,这些系统可以迅速处理数百张X射线和计算机断层扫描(CT)图像,以加速肺炎的诊断,例如SARS,COVID-19,并帮助其遏制。医学图像分析是最有前途的研究领域之一,它为诊断和决定的设施提供了许多疾病,例如MERS,Covid-19。在本文中,我们介绍了最近深度卷积神经网络(DCNN)体系结构的比较,用于肺炎图像的自动二进制分类,基于(VGG16,VGG19,Densenet201,inception_resnet_v2,incept_v3,inception_v3,inception_v3,incemnet50,resnet50,mobilenet_v2和Xection)的罚款调谐版本。提出的工作已使用胸部X射线和CT数据集进行了测试,该数据集包含5856张图像(4273次肺炎和1583个正常)。结果,我们可以得出结论,resnet50,mobilenet_v2和inception_resnet_v2的微调版本表现出高度令人满意的性能,训练和验证精度的提高(超过精度的96%以上)。与CNN不同,Xception,VGG16,VGG19,Inception_V3和Densenet201的性能低(精度超过84%)。

Recently, researchers, specialists, and companies around the world are rolling out deep learning and image processing-based systems that can fastly process hundreds of X-Ray and computed tomography (CT) images to accelerate the diagnosis of pneumonia such as SARS, COVID-19, and aid in its containment. Medical images analysis is one of the most promising research areas, it provides facilities for diagnosis and making decisions of a number of diseases such as MERS, COVID-19. In this paper, we present a comparison of recent Deep Convolutional Neural Network (DCNN) architectures for automatic binary classification of pneumonia images based fined tuned versions of (VGG16, VGG19, DenseNet201, Inception_ResNet_V2, Inception_V3, Resnet50, MobileNet_V2 and Xception). The proposed work has been tested using chest X-Ray & CT dataset which contains 5856 images (4273 pneumonia and 1583 normal). As result we can conclude that fine-tuned version of Resnet50, MobileNet_V2 and Inception_Resnet_V2 show highly satisfactory performance with rate of increase in training and validation accuracy (more than 96% of accuracy). Unlike CNN, Xception, VGG16, VGG19, Inception_V3 and DenseNet201 display low performance (more than 84% accuracy).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源