论文标题
Cryspnet:通过神经网络进行晶体结构预测
CRYSPNet: Crystal Structure Predictions via Neural Network
论文作者
论文摘要
结构是晶体固体的最基本和最重要的特性。它直接或间接地决定了大多数材料特征。但是,预测固体的晶体结构仍然是一个强大的且无法完全解决的问题。该任务的标准理论工具在计算上是昂贵的,有时不准确。在这里,我们提出了一种利用机器学习进行晶体结构预测的替代方法。我们开发了一种称为晶体结构预测网络(Cryspnet)的工具,该工具只能基于其化学成分的无机材料的Bravais晶格,空间组和晶格参数。 Cryspnet由一系列神经网络模型组成,使用AS INPUTS预测构成该化合物的元素的性质。它在无机晶体结构数据库的100,000多个条目中进行了训练和验证。该工具显示出强大的预测能力,并以很大的边距优于替代策略。它可以向公众提供(https://github.com/auroralht/cryspnet),它既可以用作独立的预测引擎,也可以用作生成候选结构的方法,以进行进一步的计算和/或实验验证。
Structure is the most basic and important property of crystalline solids; it determines directly or indirectly most materials characteristics. However, predicting crystal structure of solids remains a formidable and not fully solved problem. Standard theoretical tools for this task are computationally expensive and at times inaccurate. Here we present an alternative approach utilizing machine learning for crystal structure prediction. We developed a tool called Crystal Structure Prediction Network (CRYSPNet) that can predict the Bravais lattice, space group, and lattice parameters of an inorganic material based only on its chemical composition. CRYSPNet consists of a series of neural network models, using as inputs predictors aggregating the properties of the elements constituting the compound. It was trained and validated on more than 100,000 entries from the Inorganic Crystal Structure Database. The tool demonstrates robust predictive capability and outperforms alternative strategies by a large margin. Made available to the public (at https://github.com/AuroraLHT/cryspnet), it can be used both as an independent prediction engine or as a method to generate candidate structures for further computational and/or experimental validation.