论文标题
无功能的理性曲线社区
Neighborhoods of rational curves without functions
论文作者
论文摘要
我们证明了(非紧凑)复杂表面的存在,其嵌入了平滑的有理曲线,因此沿曲线没有任何形式的单数叶子。特别是,在曲线的小社区中,任何仿产功能都是恒定的。这意味着PICARD组并非可计算产生。
We prove the existence of (non compact) complex surfaces with a smooth rational curve embedded such that there does not exist any formal singular foliation along the curve. In particular, at arbitray small neighborhood of the curve, any meromorphic function is constant. This implies that the Picard group is not countably generated.