论文标题

关于霍普和霍姆组行动

On Hom-Groups and Hom-Group actions

论文作者

Chen, Liangyun, Feng, Tianqi, Ma, Yao, Saha, Ripan, Zhang, Hongyi

论文摘要

一个群体是一个群体的非缔合性概括,其关联性和统一性被兼容的徒图扭曲。在本文中,我们给出了一些新的hom群体示例,并展示了同构象同构的第一个和第二个同构基本定理。我们还介绍了Hom-Group动作的概念,作为一种应用,我们展示了第一个沿小组动作线的Hom-Group的Sylow定理。

A Hom-group is the non-associative generalization of a group, whose associativity and unitality are twisted by a compatible bijective map. In this paper, we give some new examples of Hom-groups, and show the first and the second isomorphism fundamental theorems of homomorphisms on Hom-groups. We also introduce the notion of Hom-group action, and as an application, we show the first Sylow theorem for Hom-groups along the line of group actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源