论文标题

超平滑的$ C^1 $样条空间在平面混合三角形和四边形网格

A super-smooth $C^1$ spline space over planar mixed triangle and quadrilateral meshes

论文作者

Grošelj, Jan, Kapl, Mario, Knez, Marjeta, Takacs, Thomas, Vitrih, Vito

论文摘要

在本文中,我们引入了由三角形和四边形组成的混合网格上的$ C^1 $样条空间,适用于基于FEM的或同一地理分析。在这种情况下,网格被认为是平面多边形结构域分为三角形和/或四边形的分区。提出的空间结合了Argyris三角形,参见。 (Argyris,Fried,Scharpf; 1968),在(Brenner,Sung; 2005)和(Kapl,Sangalli,Takacs; 2019)中引入了$ c^1 $ Quadrilital元素,用于多项式学位$ p \ geq 5 $。假定该空间在所有顶点均为$ c^2 $,边缘的$ c^1 $均为$ c^1 $,并且在边缘所选点的顶点,值和正常衍生物处的$ c^2 $ -DATA唯一确定了元素内部其他点的值。 将Argyris三角元素与最近的$ C^1 $四边形结构相结合的动机,受同几何分析的启发,是两个方面:一方面,以$ C^1 $时尚连接三角形和四边形有限元的能力是非主导和理论上的利益。我们不仅提供近似误差界限,还提供验证结果的数值测试。另一方面,施工通过允许更大的灵活性,同时在任何地方保持$ c^1 $,从而促进了网格划分的过程。例如,当执行张量产生B-Splines的修剪时,这是相关的。 在介绍的构造中,我们假设具有(BI)线性元素映射和任意程度的分段多项式函数$ p \ geq 5 $。基础易于实现,并且获得的结果对于$ l^\ infty $,$ l^2 $的网格尺寸以及Sobolev Norms $ H^1 $和$ H^2 $都是最佳的。

In this paper we introduce a $C^1$ spline space over mixed meshes composed of triangles and quadrilaterals, suitable for FEM-based or isogeometric analysis. In this context, a mesh is considered to be a partition of a planar polygonal domain into triangles and/or quadrilaterals. The proposed space combines the Argyris triangle, cf. (Argyris, Fried, Scharpf; 1968), with the $C^1$ quadrilateral element introduced in (Brenner, Sung; 2005) and (Kapl, Sangalli, Takacs; 2019) for polynomial degrees $p\geq 5$. The space is assumed to be $C^2$ at all vertices and $C^1$ across edges, and the splines are uniquely determined by $C^2$-data at the vertices, values and normal derivatives at chosen points on the edges, and values at some additional points in the interior of the elements. The motivation for combining the Argyris triangle element with a recent $C^1$ quadrilateral construction, inspired by isogeometric analysis, is two-fold: on one hand, the ability to connect triangle and quadrilateral finite elements in a $C^1$ fashion is non-trivial and of theoretical interest. We provide not only approximation error bounds but also numerical tests verifying the results. On the other hand, the construction facilitates the meshing process by allowing more flexibility while remaining $C^1$ everywhere. This is for instance relevant when trimming of tensor-product B-splines is performed. In the presented construction we assume to have (bi)linear element mappings and piecewise polynomial function spaces of arbitrary degree $p\geq 5$. The basis is simple to implement and the obtained results are optimal with respect to the mesh size for $L^\infty$, $L^2$ as well as Sobolev norms $H^1$ and $H^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源