论文标题

Polarnet:在线激光点云语义细分的改进的网格表示

PolarNet: An Improved Grid Representation for Online LiDAR Point Clouds Semantic Segmentation

论文作者

Zhang, Yang, Zhou, Zixiang, David, Philip, Yue, Xiangyu, Xi, Zerong, Gong, Boqing, Foroosh, Hassan

论文摘要

在自主驾驶系统中对细粒度感知的需求已导致最近对单扫激龙的在线语义分割的研究增加了。尽管有新兴的数据集和技术进步,但由于三个原因,它仍然具有挑战性:(1)需要有限的硬件,需要近实时的延迟; (2)跨太空的激光雷达点的不平衡甚至长尾巴分布; (3)越来越多的极细粒语义类别。为了共同解决上述所有挑战,我们提出了一种新的激光雷达特异性,最接近的无邻居分段算法-polarnet。我们的极性鸟的眼睛视图表示不使用常见的球形或鸟类视图投影,而是平衡了极性坐标系中网格细胞之间的点,从而间接使分段网络的注意力与沿径向轴的点的长尾缩分布。我们发现,我们的编码方案在三个截然不同的分段数据集中大大增加了MIOU,同时保留了几乎实时的吞吐量。

The need for fine-grained perception in autonomous driving systems has resulted in recently increased research on online semantic segmentation of single-scan LiDAR. Despite the emerging datasets and technological advancements, it remains challenging due to three reasons: (1) the need for near-real-time latency with limited hardware; (2) uneven or even long-tailed distribution of LiDAR points across space; and (3) an increasing number of extremely fine-grained semantic classes. In an attempt to jointly tackle all the aforementioned challenges, we propose a new LiDAR-specific, nearest-neighbor-free segmentation algorithm - PolarNet. Instead of using common spherical or bird's-eye-view projection, our polar bird's-eye-view representation balances the points across grid cells in a polar coordinate system, indirectly aligning a segmentation network's attention with the long-tailed distribution of the points along the radial axis. We find that our encoding scheme greatly increases the mIoU in three drastically different segmentation datasets of real urban LiDAR single scans while retaining near real-time throughput.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源