论文标题

通过拓扑彩虹效应的本地弹性边缘波

Localising elastic edge waves via the topological rainbow effect

论文作者

Ungureanu, Bogdan, Makwana, Mehul P., Craster, Richard V., Guenneau, Sebastien

论文摘要

我们结合了两个不同的领域,拓扑物理和分级的超材料,以设计拓扑层面以控制和重定向弹性波。我们从策略上设计了一个二维结晶穿孔弹性板,使用正方形晶格,由孔孔组成的%%,该晶体构成对称性诱导的拓扑边缘状态。通过同时允许弹性底物在空间上变化,我们能够将入射慢波转换为一系列具有不同包膜调制的强大模式。这种绝热的过渡将传入的能量定位于一个浓缩区域,然后将其抑制或提取。对于较大的过渡,观察到不同的行为。传入的能量沿界面传播,然后将其分成两个不同的手性梁。这种“拓扑彩虹”效应利用了两个主要概念,即量子谷孔效应和通常与电磁材料相关的彩虹效应。拓扑彩虹效应超越了特定的物理系统,因此,我们描述的现象可以被转移到其他波浪物理学。由于几何形状的弹性能量可调性,我们的结果对诸如开关,过滤器和能量收获器等应用具有深远的影响。

We combine two different fields, topological physics and graded metamaterials to design a topological metasurface to control and redirect elastic waves. We strategically design a two-dimensional crystalline perforated elastic plate, using a square lattice, %consisting of bore holes, that hosts symmetry-induced topological edge states. By concurrently allowing the elastic substrate to spatially vary in depth, we are able to convert the incident slow wave into a series of robust modes, with differing envelope modulations. This adiabatic transition localises the incoming energy into a concentrated region where it can then be damped or extracted. For larger transitions, different behaviour is observed; the incoming energy propagates along the interface before being partitioned into two disparate chiral beams. This "topological rainbow" effect leverages two main concepts, namely the quantum valley-Hall effect and the rainbow effect usually associated with electromagnetic metamaterials. The topological rainbow effect transcends specific physical systems, hence, the phenomena we describe can be transposed to other wave physics. Due to the directional tunability of the elastic energy by geometry our results have far-reaching implications for applications such as switches, filters and energy-harvesters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源