论文标题

某些复曲纤维束的数值表征

Numerical characterization of some toric fiber bundles

论文作者

Druel, Stéphane, Bianco, Federico Lo

论文摘要

给定一个复杂的投影歧管$ x $和一个带有正常交叉口的除数$ d $,我们说,如果对数$ t_x( - \ log d)$的对数切线捆绑包( - \ log d)$是r-flat,如果其向下倾斜到$ x $中包含的任何理性曲线的正常化是微不足道的矢量束。如果此外$ - (k_x+d)$是nef,则原木规范除数$ k_x+d $是扭转,而最大的理性链连接纤维则是一种典型的典型纤维$ f $,是一个典型的纤维纤维$ f $是带有边界划分的折磨$ d_ d_ {| f} $。

Given a complex projective manifold $X$ and a divisor $D$ with normal crossings, we say that the logarithmic tangent bundle $T_X(-\log D)$ is R-flat if its pull-back to the normalization of any rational curve contained in $X$ is the trivial vector bundle. If moreover $-(K_X+D)$ is nef, then the log canonical divisor $K_X+D$ is torsion and the maximally rationally chain connected fibration turns out to be a smooth locally trivial fibration with typical fiber $F$ being a toric variety with boundary divisor $D_{|F}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源