论文标题

希格斯束真空吸尘器的几何统一

Geometric Unification of Higgs Bundle Vacua

论文作者

Cvetic, Mirjam, Heckman, Jonathan J., Rochais, Thomas B., Torres, Ethan, Zoccarato, Gianluca

论文摘要

希格斯捆绑包是用于研究弦乐紧凑型中一系列相交的勃雷系统的中心工具。相应世界情绪理论的内部量规理论方程式的解决方案引起了不同的低能量有效场理论。这已被大量用于对本地$ g_2 $空间的M理论研究,以及对本地椭圆纤维纤维的calabi-yau四倍的f理论。在本文中,我们表明3D $ \ MATHCAL {n} = 1 $有效的现场理论由M理论定义在本地$ spin(7)$ space在4D $ \ MATHCAL {n} = 1 $ M- M-和F-theory Vacua相关的Higgs Bundle数据。该3D系统是在不同4D真空吸尘器之间具有有限厚度的接口。我们在这种本地$ spin(7)$空间上开发了M理论的一般形式主义,并构建了明确的插值解决方案。这提供了一种互补的局部仪表理论分析,该分析是从广义连接的总和中构建$ spin(7)$空间的最近提出的方法。

Higgs bundles are a central tool used to study a range of intersecting brane systems in string compactifications. Solutions to the internal gauge theory equations of motion for the corresponding worldvolume theories of branes give rise to different low energy effective field theories. This has been heavily used in the study of M-theory on local $G_2$ spaces and F-theory on local elliptically fibered Calabi-Yau fourfolds. In this paper we show that the 3D $\mathcal{N} = 1$ effective field theory defined by M-theory on a local $Spin(7)$ space unifies the Higgs bundle data associated with 4D $\mathcal{N} = 1$ M- and F-theory vacua. This 3D system appears as an interface with finite thickness between different 4D vacua. We develop the general formalism of M-theory on such local $Spin(7)$ spaces, and build explicit interpolating solutions. This provides a complementary local gauge theory analysis of a recently proposed approach to constructing $Spin(7)$ spaces from generalized connected sums.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源